An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Pareto Set Identification Approach for Multi-objective Optimization on Black-box Functions

Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multi-objective optimization approaches addresses problems with expensive black-box functions. In this paper, a new method called the Pareto set pursuing (PSP) method is developed. By developing sampling guidance functions based on approximation model...

متن کامل

An Evolutionary Algorithm for Multiobjective Optimization The Strength Pareto Approach

Evolutionary algorithms EA have proved to be well suited for optimization prob lems with multiple objectives Due to their inherent parallelism they are able to capture a number of solutions concurrently in a single run In this report we propose a new evolutionary approach to multicriteria optimization the Strength Pareto Evolutionary Algorithm SPEA It combines various features of previous multi...

متن کامل

Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions

Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...

متن کامل

Efficient Global Optimization of Expensive Black-Box Functions

In many engineering optimization problems, the number of function evaluations is severely limited by time or cost. These problems pose a special challenge to the field of global optimization, since existing methods often require more function evaluations than can be comfortably afforded. One way to address this challenge is to fit response surfaces to data collected by evaluating the objective ...

متن کامل

An Efficient Sampling Approach to Multiobjective Optimization

This paper presents a new approach to multiobjective optimization based on the principles of probabilistic uncertainty analysis. At the core of this approach is an efficient nonlinear multiobjective optimization algorithm, Minimizing Number of Single Objective Optimization Problems (MINSOOP), to generate a true representation of the whole Pareto surface. Results show that the computational savi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mechanical Design

سال: 2004

ISSN: 1050-0472,1528-9001

DOI: 10.1115/1.1904639